1.
REDUCE INSTRUCTION SET COMPUTER (RISC) .
Kata
“reduced” berarti pengurangan pada set instruksi. RISC merupakan rancangan
arsitektur CPU yang mengembil dasar filosofi bahwa prosesor dibuat dengan
arsitektur yang tidak rumit dengan membatasi jumlah instruksi hanya pada
instruksi dasar yang diperlukan saja. Dengan kata lain RISC adalah arsitektur
komputer dengan kumpulan perintah (instruksi) yang sederhana, tetapi dalam
kesederhanaan tersebut didapatkan kecepatan operasi setiap siklus instruksinya.
Kebanyakan pada proses RISC , instruksi operasi dasar aritmatik hanya
penjumlahan dan pengurangan, untuk perkalian dan pembagian sudah dianggap
operasi ang kompleks. RISC menyederhanakan rumusan perintah sehingga lebih
efisien dalam penyusunan kompiler yang pada akhirnya dapat memaksimumkan
kinerja program yang ditulis dalam bahasa tingkat tinggi.
Ada beberapa
elemen penting dalam arsitektur RISC, yaitu :
a. Set instruksi yang terbatas
dan sederhana
b. Register general-purpose yang
berjumlah banyak, atau pengguanaan teknologi kompiler untuk mengoptimalkan pemakaian
regsiternya.
c. Penekanan pada pengoptimalan
pipeline instruksi.
Ciri-ciri
karakteristik RISC :
a. Instruksi berukuran tunggal.
b. Ukuran yang umum adalah 4 byte.
c. Jumlah mode pengalamatan data yang
sedikit, biasanya kurang dari lima buah.
d. Tidak terdapat pengalamatan tak
langsung.
e. Tidak terdapat operasi yang
menggabungkan operasi load/store dengan operasi aritmatika .
Ada tiga buah elemen yang menentukan karakter arsitektur RISC, yaitu:
• Penggunaan register dalam jumlah yang besar. Hal ini dimaksudkan untuk mengoptimalkan pereferensian operand.
• Diperlukan perhatian bagi perancangan pipeline instruksi. Karena tingginya proporsi instruksi pencabangan bersyarat dan prosedur call, pipeline instruksi yang bersifat langsung dan ringkas akan menjadi tidak efisien.
• Terdapat set instruksi yang disederhanakan (dikurangi).
Perkembangan
RISC
Pada tahun 1980, John Cocke di IBM menghasilkan minikomputer eksperimental, yaitu IBM 801 dengan prosesor komersial pertama yang menggunakan RISC. Pada tahun itu juga, Kelompok Barkeley yang dipimpin David Patterson mulai meneliti rancangan RISC dengan menghasilkan RISC-1 dan RISC-2.
Pada tahun 1980, John Cocke di IBM menghasilkan minikomputer eksperimental, yaitu IBM 801 dengan prosesor komersial pertama yang menggunakan RISC. Pada tahun itu juga, Kelompok Barkeley yang dipimpin David Patterson mulai meneliti rancangan RISC dengan menghasilkan RISC-1 dan RISC-2.
Pemakai
Teknik RISC
• IBM dengan Intel Inside-nya.
• Prosessor PowerPC, prosessor buatan motorola yang menjadi otak utama komputer Apple Macintosh.
• IBM dengan Intel Inside-nya.
• Prosessor PowerPC, prosessor buatan motorola yang menjadi otak utama komputer Apple Macintosh.
Konsep
Arsitektur RISC
Konsep arsitektur RISC banyak menerapkan proses eksekusi pipeline. Meskipun jumlah perintah tunggal yang diperlukan untuk melakukan pekerjaan yang diberikan mungkin lebih besar, eksekusi secara pipeline memerlukan waktu yang lebih singkat daripada waktu untuk melakukan pekerjaan yang sama dengan menggunakan perintah yang lebih rumit. RISC memerlukan memori yang lebih besar untuk mengakomodasi program yang lebih besar. Dengan mengoptimalkan penggunaan memori register diharapkan siklus operasi semakin cepat.
Konsep arsitektur RISC banyak menerapkan proses eksekusi pipeline. Meskipun jumlah perintah tunggal yang diperlukan untuk melakukan pekerjaan yang diberikan mungkin lebih besar, eksekusi secara pipeline memerlukan waktu yang lebih singkat daripada waktu untuk melakukan pekerjaan yang sama dengan menggunakan perintah yang lebih rumit. RISC memerlukan memori yang lebih besar untuk mengakomodasi program yang lebih besar. Dengan mengoptimalkan penggunaan memori register diharapkan siklus operasi semakin cepat.
2.
PIPELINING.
Pengertian
pipelining, pipelining yaitu suatu cara yang digunakan untuk melakukan
sejumlah kerja secara bersama tetapi dalam tahap yang berbeda yang dialirkan
secara kontinu pada unit pemrosesan. Dengan cara ini, maka unit pemrosesan
selalu bekerja.
Teknik
pipeline ini dapat diterapkan pada berbagai tingkatan dalam sistemkomputer.
Bisa pada level yang tinggi, misalnya program aplikasi, sampai pada tingkat
yang rendah, seperti pada instruksi yang dijalankan oleh microprocessor.
1.
Pengenalan
Pipeline.
Prosesor
Pipeline yang berputar adalah prosesor baru untuk arsitektur superscalar
komputasi. Ini didasarkan pada cara yang mudah dan pipeline yang biasa,
struktur yang dapat mendukung beberapa ALU untuk lebih efisien dalam pengiriman
dari bagian beberapa instruksi. Daftar nilai arus yang berputar di sekitar
pipa, dibuat oleh dependensi data lokal. Selama operasi normal, kontrol sirkuit
tidak berada pada jalur yang kritis dan kinerja hanya dibatasi oleh data harga.
Operasi mengalir dengan interval waktu sendiri. Ide utama dari Pipeline
Prosesor yang berputar adalah circular uni-arah mengalir dari memori register
oleh pusat waktu logika dan proses secara parallel dari operasi ALU.
Struktur lain yang menggunakan penyelesaian deteksi atau selain penundaan yang tepat dari pengaturan waktu pusat tetapi karena masalah waktu yang Syncronization, Pipelines memaksakan sebuah penurunan kinerja. Misalnya counterflow pipeline prosesor yang dirancang sekitar dua arah, pipa membawa petunjuk dan argumen dalam satu arah dan hasil yang lainnya b ini dapat menyebabkan Syncronization masalah antara prosesor.
Pipeline yang berputar menghindari masalah yang hanya melewati data dalam satu arah. Pada prinsipnya, prosesor dari register terus beredar di sekitar cincin yang berhubungan dengan berbagai fungsi ALU, akses memori dan sebagainya .ada tiap tahap, nilai-nilai yang memeriksa dan disampaikan, kemungkinan setelah perubahan, tidak signifikan dengan pengeluaran tambahan untuk sinkronisasi. Dispatched adalah instruksi dari pusat ke fungsi unit yang memungkinkan beberapa masalah instruksi .
Struktur lain yang menggunakan penyelesaian deteksi atau selain penundaan yang tepat dari pengaturan waktu pusat tetapi karena masalah waktu yang Syncronization, Pipelines memaksakan sebuah penurunan kinerja. Misalnya counterflow pipeline prosesor yang dirancang sekitar dua arah, pipa membawa petunjuk dan argumen dalam satu arah dan hasil yang lainnya b ini dapat menyebabkan Syncronization masalah antara prosesor.
Pipeline yang berputar menghindari masalah yang hanya melewati data dalam satu arah. Pada prinsipnya, prosesor dari register terus beredar di sekitar cincin yang berhubungan dengan berbagai fungsi ALU, akses memori dan sebagainya .ada tiap tahap, nilai-nilai yang memeriksa dan disampaikan, kemungkinan setelah perubahan, tidak signifikan dengan pengeluaran tambahan untuk sinkronisasi. Dispatched adalah instruksi dari pusat ke fungsi unit yang memungkinkan beberapa masalah instruksi .
2.
Instruksi
pipeline
Tahapan
pipeline :
a.. Mengambil
instruksi dan membuffferkannya
b. Ketika
tahapan kedua bebas tahapan pertama mengirimkan instruksi yang dibufferkan
tersebut .
c. Pada
saat tahapan kedua sedang mengeksekusi instruksi, tahapan pertama memanfaatkan
siklus memori yang tidak dipakai untuk mengambil dan membuffferkan instruksi
berikutnya .
Instuksi
pipeline:
Karena untuk
setiap tahap pengerjaan instruksi, komponen yang bekerja berbeda, maka
dimungkinkan untuk mengisi kekosongan kerja di komponen tersebut.Sebagai contoh
:
Instruksi 1:
ADD AX, AX
Instruksi 2:
ADD EX, CX
Setelah CU
menjemput instruksi 1 dari memori (IF), CU akan menerjemahkan instruksi
tersebut(ID). PEPada menerjemahkan instruksi 1 tersebut, komponen IF tidak
bekerja. Adanya teknologi pipeline menyebabkan IF akan menjemput instruksi 2
pada saat ID menerjemahkan instruksi 1. Demikian seterusnya pada saat CU
menjalankan instruksi 1 (EX), instruksi 2 diterjemahkan (ID).
Ø Keuntungan pipelining .
1. Waktu
siklus prosesor berkurang, sehingga meningkatkan tingkat instruksi dalam
kebanyakan kasus( lebih cepat selesai).
2. Beberapa
combinational sirkuit seperti penambah atau pengganda dapat dibuat lebih cepat
dengan menambahkan lebih banyak sirkuit. Jika pipelining digunakan sebagai
pengganti, hal itu dapat menghemat sirkuit & combinational yang lebih
kompleks.
3. Pemrosesan
dapat dilakukan lebih cepat, dikarenakan beberapa proses dilakukan secara
bersamaan dalam satu waktu.
Ø Kerugian pipeline .
1. Pipelined
prosesor menjalankan beberapa instruksi pada satu waktu. Jika ada beberapa
cabang yang mengalami penundaan cabang (penundaan memproses data) dan akibatnya
proses yang dilakukan cenderung lebih lama.
2. Instruksi
latency di non-pipelined prosesor sedikit lebih rendah daripada dalam pipelined
setara. Hal ini disebabkan oleh fakta bahwa intruksi ekstra harus ditambahkan
ke jalur data dari prosesor pipeline.
3. Kinerja prosesor
di pipeline jauh lebih sulit untuk meramalkan dan dapat bervariasi lebih luas
di antara program yang berbeda.
4. Karena beberapa
instruksi diproses secara bersamaan ada kemungkinan instruksi tersebut
sama-sama memerlukan resource yang sama, sehingga diperlukan adanya pengaturan
yang tepat agar proses tetap berjalan dengan benar.
5. Sedangkan
ketergantungan terhadap data, bisa muncul, misalnya instruksi yang berurutan
memerlukan data dari instruksi yang sebelumnya.
6. Kasus Jump, juga
perlu perhatian, karena ketika sebuah instruksi meminta untuk melompat ke suatu
lokasi memori tertentu, akan terjadi perubahan program counter, sedangkan
instruksi yang sedang berada dalam salah satu tahap proses yang berikutnya
mungkin tidak mengharapkan terjadinya perubahan program counter.
SUMBER :
http://andi-granderist.blogspot.com/2013/01/pipelining-risc-dan-prosesor-paralel.html
SUMBER :
http://andi-granderist.blogspot.com/2013/01/pipelining-risc-dan-prosesor-paralel.html
Tidak ada komentar:
Posting Komentar